Searchable abstracts of presentations at key conferences on calcified tissues

ba0001pp232 | Cell biology: osteoclasts and bone resorption | ECTS2013

The use of photo-activatable fluorophores to study the turnover of the receptor activator of NFκB receptor in health and disease

Mellis David , Duthie Angela , Clark Susan , Crockett Julie

Familial expansile osteolysis (FEO) is characterised by focal areas of increased bone turnover driven by bone-resorbing osteoclasts. The syndrome is caused by a heterozygous tandem insertion duplication mutation within the signal peptide region of TNFRSF11a (encoding receptor activator of NFκB; RANK). Our recent research has demonstrated that heterotrimeric receptor formation may hold the key to the disease phenotype. We have shown previously that, whilst homozygous overe...

ba0001pp233 | Cell biology: osteoclasts and bone resorption | ECTS2013

Investigating homozygous vs heterozygous expression of disease-associated receptor activator of NFκB mutations in vitro

Mellis David , Duthie Angela , Clark Susan , Crockett Julie

Early-onset Paget’s disease of bone (ePDB), familial expansile osteolysis (FEO) and expansile skeletal hyperphosphatasia (ESH) are related syndromes caused by heterozygous tandem insertion duplication mutations within the signal peptide region of TNFRSF11a (encoding receptor activator of NFκB; RANK). Given that patients are always heterozygous for these mutations we have generated thirteen cell lines to investigate the molecular consequences of these mutations in...

ba0003pp158 | Cell biology: osteoclasts and bone resorption | ECTS2014

Study of the molecular effects of disease-causing mutations in RANK using human protein expression models

Das Subhajit , Bramham Janice , Duthie Angela , Clark Susan , Crockett Julie

The interaction of Receptor Activator of NFkB ligand (RANKL) with its cognate receptor RANK is crucial for osteoclast formation. We studied eight point mutations within human RANK associated with rare forms of osteopetrosis to gain mechanistic insights into the regulation of RANK signalling.We investigated the role of the oligomerisation domain within the cytoplasmic region of RANK studying two mutations (W434X and G280X) identified in rare cases of oste...